%I #5 Aug 03 2012 10:35:56
%S 3,4,7,8,22,19,44,35,35,103,55,96,185,128,109,130,344,167,265,484,230,
%T 359,285,250,498,889,571,1014,648,242,804,616,1524,447,1757,795,849,
%U 1259,951,1009,2468,713,2760,1721,2978,728,787,2166,3733,2316,1724,4170
%N Smallest integer k such that prime(n+1) = floor(x*prime(n)) where x = (k/(k-1))^n.
%H Michel Lagneau, <a href="/A215110/b215110.txt">Table of n, a(n) for n = 1..350</a>
%e a(3) = 7 because prime(4) = floor(prime(3) * (7/6)^3) = floor(5*1.587962…) = 7.
%p with(numtheory):for n from 1 to 85 do:i:=0:p0:=ithprime(n):p1:=ithprime(n+1):for k from 2 to 10^8 while(i=0) do:x:=(k/(k-1))^n:if p1=floor(p0*x) then i:=1 : printf(`%d, `,k):else fi:od:od:
%Y Cf. A000040.
%K nonn
%O 1,1
%A _Michel Lagneau_, Aug 03 2012