login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = F(2*n)^5 with F=A000045 (Fibonacci numbers).
4

%I #30 Oct 01 2024 15:36:00

%S 0,1,243,32768,4084101,503284375,61917364224,7615646045657,

%T 936668172433707,115202670521319424,14168993617568728125,

%U 1742671044798615789551,214334370099947863277568,26361384861716322814590193

%N a(n) = F(2*n)^5 with F=A000045 (Fibonacci numbers).

%H Vincenzo Librandi, <a href="/A215044/b215044.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (144,-2640,6930,-2640,144,-1).

%F O.g.f.: x*(1 + 99*x + 416*x^2 + 99*x^3 + x^4)/((1-3*x+x^2)*(1-18*x+x^2)*(1-123*x+x^2)), (from the even part of the bisection of A056572).

%F a(n) = (5*F(4*n) - 4*F(8*n) + F(12*n))/(5^2*L(2*n)), with L=A000032 (Lucas). See the third row in the signed triangle A039598, called in a general comment S.

%F a(n) = (10*F(2*n) - 5*F(6*n) + F(10*n))/5^2, from the partial fraction decomposition of the o.g.f. - _Wolfdieter Lang_, Oct 11 2012

%t Table[Fibonacci[2*n]^5, {n,0,15}] (* _Vincenzo Librandi_, Sep 02 2012 *)

%o (Magma) [Fibonacci(2*n)^5: n in [0..15]]; // _Vincenzo Librandi_, Sep 02 2012

%o (PARI) a(n)=fibonacci(2*n)^5 \\ _Charles R Greathouse IV_, Oct 16 2015

%Y Cf. A000045, A056572, A215045 (odd part).

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Aug 31 2012