login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} fibonomial(k+3,3), n >= 0.
4

%I #41 Mar 03 2024 18:48:00

%S 1,4,19,79,339,1431,6072,25707,108922,461362,1954426,8278978,35070483,

%T 148560678,629313573,2665814361,11292572005,47836100785,202636977730,

%U 858384007525,3636173014596,15403076054964,65248477252164

%N a(n) = Sum_{k=0..n} fibonomial(k+3,3), n >= 0.

%C This sum is obtained from the m=2 member of the m-family of sums s(m;n) := Sum_{k=0..n} F(k+m)*F(k+1)*F(k), n>=0, given by

%C (F(n+m)*F(n+2)*F(n+1) - (-1)^n*F(m)*A008346(n))/2 with A008346(n) = (F(n) + (-1)^n), where F = A000045.

%C The formula for s(m;n), m>=0, n>=0, follows by induction on m, using the sums for m=0 and m=1. s(0,n) = F(n+1)*(F(n+1)^2 - (-1)^n)/2 = F(n+2)*F(n+1)*F(n)/2 (see A001655(n-1)), and s(1,n) = (F(n+2)*F(n+1)^2 - (-1)^n*A008346(n))/2 (see A215038). For the formulas for s(0,n) and s(1,n) see also the link on partial summation, eqs. (6) and (7). There Sum_{k=0..n} fibonomial(k+2,k) is obtained more directly in eq. (5) with the help of the partial summation formula.

%H Wolfdieter Lang, <a href="/A215037/a215037.pdf">Partial summation formula applied to sums over cubes of Fibonacci numbers.</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4, 3, -9, 2, 1).

%F Let F(n) be the Fibonacci number A000045(n).

%F a(n) = Sum_{k=0..n} F(k+3)*F(k+2)*F(k+1)/2.

%F a(n) = (F(n+3)^2*F(n+2) + (-1)^n*A008346(n+1))/4, n>=0, with A008346(n) = F(n) + (-1)^n. See a comment above.

%F G.f.: 1/((1+x-x^2)*(1-4*x-x^2)*(1-x)) (from the g.f. of the Fibonomials A001655).

%F From _Hans J. H. Tuenter_, Jun 26 2023: (Start)

%F a(n) = (F(n+3)^2*F(n+2) + (-1)^n*F(n+1)-1)/4.

%F a(n) = (F(n+3)^3 + F(n+2)^3 + (-1)^n*F(n+1) - 2)/8.

%F a(n) = (F(3*n+8) + 4*(-1)^n*F(n+1) - 5)/20.

%F a(n) = 4*a(n-1) + 3*a(n-2) - 9*a(n-3) + 2*a(n-4) + a(n-5).

%F a(-n) = A363753(n-3).

%F (End)

%e a(3) = 2*1*1/2 + 3*2*1/2 + 5*3*2/2 + 8*5*3/2 = 1 + 3 + 15 + 60 = 79.

%t LinearRecurrence[{4, 3, -9, 2, 1}, {1, 4, 19, 79, 339}, 23] (* _Hans J. H. Tuenter_, Jun 26 2023 *)

%Y Cf. A000045, A008346, A001655, A215038, A363753.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Aug 09 2012