login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n+1) = (concatenation of n and n+1) - a(n), a(0) = 0.
4

%I #22 Aug 23 2012 10:28:27

%S 0,1,11,12,22,23,33,34,44,45,865,146,966,247,1067,348,1168,449,1269,

%T 550,1370,651,1471,752,1572,853,1673,954,1774,1055,1875,1156,1976,

%U 1257,2077,1358,2178,1459,2279,1560,2380,1661,2481,1762,2582,1863,2683,1964,2784,2065,2885,2166,2986,2267,3087,2368,3188,2469,3289,2570,3390,2671,3491,2772,3592,2873,3693

%N a(n+1) = (concatenation of n and n+1) - a(n), a(0) = 0.

%C Eric Angelini defined this by saying that "a(n)+a(n+1) = concatenation of n and (n+1)".

%C An easy induction argument shows that a(n) is always positive.

%F The o.g.f. x*(1+10*x+810*x^9-720*x^10)/(1+x)/(1-x)^2 yields correct terms up to a(99), but not beyond. - _M. F. Hasler_, Aug 23 2012

%e a(100) = concat(99,100) - a(99) = 99 100 - 4590 = 94510.

%p f:=proc(i) i*10^(1+floor(evalf(log10(i+1), 10)))+i+1; end: # A001704

%p a:=proc(n) option remember; global f; if n=1 then 1 else f(n-1)-a(n-1); fi; end;

%o (PARI) A215027(n,print_all=0)={my(a=print_all & print1(0));for(n=1,n,a=(n-1)*10^#Str(n)+n-a;print_all & print1(","a));a} \\ - _M. F. Hasler_, Aug 23 2012

%Y Cf. A001704, A215028.

%K nonn,base

%O 0,3

%A _N. J. A. Sloane_, Aug 04 2012, based on a posting to the Sequence Fans Mailing List by Eric Angelini.

%E Initial term a(0)=0 added by _M. F. Hasler_, Aug 23 2012