login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1 + floor(e^(1 + 1/2 + 1/3 + ... + 1/n)).
2

%I #13 Mar 04 2024 16:37:30

%S 3,5,7,9,10,12,14,16,17,19,21,23,25,26,28,30,32,33,35,37,39,41,42,44,

%T 46,48,49,51,53,55,57,58,60,62,64,66,67,69,71,73,74,76,78,80,82,83,85,

%U 87,89,90,92,94,96,98,99,101,103,105,106,108,110,112,114,115

%N a(n) = 1 + floor(e^(1 + 1/2 + 1/3 + ... + 1/n)).

%C a(n) is the least integer k for which log k > 1 + 1/2 + ... + 1/n.

%H Clark Kimberling, <a href="/A215001/b215001.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A215000(n)+1.

%e log 2 < 1 < log 3, so a(1) = 3;

%e log 4 < 1 + 1 + 1/2 < log 5, so a(2) = 5;

%e log 6 < 1 + 1/2 + 1/3 < log 7, so a(3) = 7.

%t f[n_] := Sum[1/h, {h, n}]; Table[Ceiling[E^f[n]], {n, 100}]

%t Floor[E^HarmonicNumber[Range[70]]]+1 (* _Harvey P. Dale_, Mar 04 2024 *)

%o (PARI) for(n=1,30, print1(1 + floor(exp(sum(k=1,n,1/k))), ", ")) \\ _G. C. Greubel_, Feb 01 2018

%o (Magma) [1 + Floor(Exp((&+[1/k :k in [1..n]]))): n in [1..30]]; // _G. C. Greubel_, Feb 01 2018

%Y Cf. A215000.

%K nonn

%O 1,1

%A _Clark Kimberling_, Aug 18 2012