login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214953
Number of solid standard Young tableaux whose shape is a 3-dimensional cube of side length n.
1
1, 1, 48, 6405442434150, 213896868423550025518356115338261531036549426
OFFSET
0,3
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012.
Wikipedia, Young tableau
MAPLE
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])<j, 0, l[i+1][j]) and l[i][j]>
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
a:= n-> b([[n$n]$n]):
seq(a(n), n=0..4);
MATHEMATICA
b[l_] := b[l] = Module[{m = Length[l]}, If[Union[Flatten[l]] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
a[0] = 1; a[n_] := b[Table[Table[n, {n}], {n}]];
a /@ Range[0, 4] (* Jean-François Alcover, Jan 28 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A292517 A272096 A115480 * A005071 A174696 A203506
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Jul 30 2012
STATUS
approved