Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 09 2024 19:42:09
%S 2,3,2,4,6,2,5,12,12,0,6,20,36,18,0,7,30,80,96,30,0,8,42,150,300,264,
%T 42,0,9,56,252,720,1140,696,60,0,10,72,392,1470,3480,4260,1848,78,0,
%U 11,90,576,2688,8610,16680,15960,4848,108,0,12,110,810,4536,18480,50190,80040
%N T(n,k) = Number of squarefree words of length n in a (k+1)-ary alphabet.
%C Table starts
%C .2..3...4....5.....6.....7......8......9.....10......11......12......13......14
%C .2..6..12...20....30....42.....56.....72.....90.....110.....132.....156.....182
%C .2.12..36...80...150...252....392....576....810....1100....1452....1872....2366
%C .0.18..96..300...720..1470...2688...4536...7200...10890...15840...22308...30576
%C .0.30.264.1140..3480..8610..18480..35784..64080..107910..172920..265980..395304
%C .0.42.696.4260.16680.50190.126672.281736.569520.1068210.1886280.3169452.5108376
%C Empirical: row n is a polynomial of degree n
%C Coefficients for rows 1-12, highest power first:
%C ...1...1
%C ...1...1...0
%C ...1...1...0...0
%C ...1...1..-1..-1...0
%C ...1...1..-2..-1...1...0
%C ...1...1..-3..-2...2...1...0
%C ...1...1..-4..-3...5...2..-2...0
%C ...1...1..-5..-4...8...4..-4..-1...0
%C ...1...1..-6..-5..12...8..-9..-4...2...0
%C ...1...1..-7..-6..17..12.-17..-7...6...0...0
%C ...1...1..-8..-7..23..17.-28.-13..10...2...2...0
%C ...1...1..-9..-8..30..23.-45.-23..25...3..-2...4...0
%C Terms in column k are multiples of k+1 due to symmetry. - _Michael S. Branicky_, May 20 2021
%H R. H. Hardin, <a href="/A214943/b214943.txt">Table of n, a(n) for n = 1..245</a>
%H A. M. Shur, <a href="http://dx.doi.org/10.1007/978-3-642-13182-0_35">Growth of Power-Free Languages over Large Alphabets</a>, CSR 2010, LNCS vol. 6072, 350-361.
%H A. M. Shur, <a href="http://arxiv.org/abs/1009.4415">Numerical values of the growth rates of power-free languages</a>, arXiv:1009.4415 [cs.FL], 2010.
%F From _Arseny Shur_, Apr 26 2015: (Start)
%F Let L_k be the limit lim T(n,k)^{1/n}, which exists because T(n,k) is a submultiplicative sequence for any k. Then L_k=k-1/k-1/k^3-O(1/k^5) (Shur, 2010).
%F Exact values of L_k for small k, rounded up to several decimal places:
%F L_2=1.30176..., L_3=2.6215080..., L_4=3.7325386... (for L_5,...,L_14 see Shur arXiv:1009.4415).
%F Empirical observation: for k=2 the O-term in the general formula is slightly bigger than 2/k^5, and for k=3,...,14 this O-term is slightly smaller than 2/k^5.
%F (End)
%e Some solutions for n=6 k=4
%e ..0....1....1....0....4....4....4....0....2....2....1....2....1....4....1....1
%e ..2....0....4....4....3....0....0....4....1....3....4....0....0....2....0....3
%e ..1....4....2....1....2....3....2....1....0....4....3....2....2....1....2....1
%e ..4....3....4....2....3....1....4....2....4....1....2....4....4....3....4....4
%e ..1....0....3....0....0....4....2....3....2....0....1....3....0....4....2....3
%e ..0....2....1....3....1....0....3....1....4....4....0....0....1....3....0....1
%o (Python)
%o from itertools import product
%o def T(n, k):
%o if n == 1: return k+1
%o symbols = "".join(chr(48+i) for i in range(k+1))
%o squares = ["".join(u)*2 for r in range(1, n//2 + 1)
%o for u in product(symbols, repeat = r)]
%o words = ("0" + "".join(w) for w in product(symbols, repeat=n-1))
%o return (k+1)*sum(all(s not in w for s in squares) for w in words)
%o def atodiag(maxd): # maxd antidiagonals
%o return [T(n, d+1-n) for d in range(1, maxd+1) for n in range(1, d+1)]
%o print(atodiag(11)) # _Michael S. Branicky_, May 20 2021
%Y Cf. A006156 (column 2), A051041 (column 3), A214939 (column 4).
%Y Cf. A002378 (row 2), A011379 (row 3), A047929(n+1) (row 4).
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jul 30 2012