Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Aug 17 2024 22:21:09
%S 2,1,2,5,8,15,28,51,94,173,318,585,1076,1979,3640,6695,12314,22649,
%T 41658,76621,140928,259207,476756,876891,1612854,2966501,5456246,
%U 10035601,18458348,33950195,62444144,114852687,211247026,388543857
%N a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=2, a(1)=1, a(2)=2.
%C With offset of 5 this sequence is the 4th row of the tribonacci array A136175.
%C For n>0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and trominoes, such that there must be exactly one "special" square (say, of a different color) in the first three cells. - _Greg Dresden_ and Emma Li, Aug 17 2024
%H G. C. Greubel, <a href="/A214899/b214899.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Robert Price)
%H Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, <a href="https://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.html">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1).
%F G.f.: (2-x-x^2)/(1-x-x^2-x^3).
%F a(n) = K(n) - T(n+1) + T(n), where K(n) = A001644(n), T(n) = A000073(n+1). - _G. C. Greubel_, Apr 23 2019
%t LinearRecurrence[{1,1,1},{2,1,2},34] (* _Ray Chandler_, Dec 08 2013 *)
%o (PARI) a(n)=([0,1,0;0,0,1;1,1,1]^n*[2;1;2])[1,1] \\ _Charles R Greathouse IV_, Jun 11 2015
%o (PARI) my(x='x+O('x^40)); Vec((2-x-x^2)/(1-x-x^2-x^3)) \\ _G. C. Greubel_, Apr 23 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2)/(1-x-x^2-x^3) )); // _G. C. Greubel_, Apr 23 2019
%o (Sage) ((2-x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 23 2019
%o (GAP) a:=[2,1,2];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # _G. C. Greubel_, Apr 23 2019
%Y Cf. A000073, A000213, A035513, A136175, A141036, A141523.
%K nonn,easy
%O 0,1
%A _Abel Amene_, Jul 29 2012