login
A007185(n)/5^n.
4

%I #9 Aug 01 2012 20:38:25

%S 1,1,5,1,29,57,37,33,109,841,373,3761,8125,9817,8517,41025,73741,

%T 67177,118293,967377,822621,3100537,6492133,16397921,33478573,

%U 13406601,83211957,177703665,35540733,114482329,881889925,176377985,35275597,15468937385,3093787477

%N A007185(n)/5^n.

%C Conjecture: For any odd m and for any k, the density of n such that a(n) == k (mod m) is 1/m.

%H Eric M. Schmidt, <a href="/A214882/b214882.txt">Table of n, a(n) for n = 1..3000</a>

%H <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>

%o (GAP) A214882 := function(max) local result, i; result := [5]; for i in [2..max] do Add(result, result[i-1]^2 mod 10^i); od; result := List([1..max], n->result[n]/5^n); return result; end;

%Y Cf. A214880, A214881, A214883.

%K nonn,base

%O 1,3

%A _Eric M. Schmidt_, Jul 31 2012