login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n such that n XOR 9 = n - 9.
2

%I #22 Sep 08 2022 08:46:02

%S 9,11,13,15,25,27,29,31,41,43,45,47,57,59,61,63,73,75,77,79,89,91,93,

%T 95,105,107,109,111,121,123,125,127,137,139,141,143,153,155,157,159,

%U 169,171,173,175,185,187,189,191,201,203,205,207,217,219,221,223,233,235,237,239,249,251

%N n such that n XOR 9 = n - 9.

%H G. C. Greubel, <a href="/A214865/b214865.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F a(n) = 4*n + 6 + (-1)^n + 2*(-1)^((2*n+(-1)^n-1)/4) for n>=0.

%F a(n) = A016825(n+1) + A132429(n) for n>=0.

%F G.f. x*(9+2*x+2*x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Mar 10 2013

%F a(n+4) = a(n) + 16. - _Alexander R. Povolotsky_, Mar 15 2013

%t CoefficientList[Series[x*(9 + 2*x + 2*x^2 + 2*x^3 + x^4)/((1 + x)*(x^2 + 1)*(x - 1)^2), {x,0,50}], x] (* _G. C. Greubel_, Feb 22 2017 *)

%o (Magma)

%o XOR := func<a, b | Seqint([ (adigs[i] + bdigs[i]) mod 2 : i in [1..n]], 2)

%o where adigs := Intseq(a, 2, n)

%o where bdigs := Intseq(b, 2, n)

%o where n := 1 + Ilog2(Max([a, b, 1]))>;

%o m:=9;

%o for n in [1 .. 500] do

%o if (XOR(n, m) eq n-m) then n; end if;

%o end for;

%o (PARI) x='x+O('x^50); Vec(x*(9+2*x+2*x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 )) \\ _G. C. Greubel_, Feb 22 2017

%Y Cf. A214863, A016825, A132429.

%K nonn,easy

%O 1,1

%A _Brad Clardy_, Mar 09 2013