Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 28 2013 12:37:37
%S 3,5,11,5,11,17,7,5,13,43,19,11,11,19,41,7,61,67,13,31,11,43,37,101,
%T 13,17,11,67,73,13,101,13,11,137,11,31,101,23,97,11,47,53,53,17,41,
%U 139,157,7,67,47,239,127,41,197,53,13,31,127,71,191,97,709,101,41
%N Smallest odd prime p such that 4^n - p*2^n - 1 is prime.
%C The average of the ratio (a(n)/log(a(n)))/n for n = 2 to N tends to 0.35 as N increases.
%C For n <= 2000, 709 terms a(n) are <= n.
%H Pierre CAMI, <a href="/A214862/b214862.txt">Table of n, a(n) for n = 2..2000</a>
%e Since 4^3 - 5*2^3 - 1 = 23 is prime, a(3) = 5.
%t sop[n_]:=Module[{c4=4^n-1,c2=2^n,i=3},While[!PrimeQ[c4-i*c2],i= NextPrime[ i]]; i]; Array[sop,70,2] (* _Harvey P. Dale_, Oct 28 2013 *)
%o (PFGW Scriptify)
%o SCRIPT
%o DIM n,1
%o DIM k
%o DIMS t
%o LABEL a
%o SET n,n+1
%o IF n>2000 THEN END
%o SET k,1
%o LABEL b
%o SET k,k+1
%o SETS t,%d,%d\,;k;n
%o PRP 4^n-p(k)*2^n-1,t
%o IF ISPRP THEN GOTO a
%o GOTO b
%o (PARI)
%o N=10^6; default(primelimit,N);
%o a(n) = {
%o my(n4=4^n, n2=2^n);
%o forprime (p=3, N,
%o if ( isprime(n4-p*n2-1), return(p) )
%o );
%o return(-1);
%o } /* _Joerg Arndt_, Mar 11 2013 */
%K nonn
%O 2,1
%A _Pierre CAMI_, Mar 09 2013