login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214854
Number of n-permutations that have exactly two square roots.
1
0, 0, 1, 0, 3, 35, 0, 714, 2835, 35307, 236880, 3342350, 28879158, 461911086, 4916519608, 87798024300, 1112716544355, 21957112744083, 322944848419392, 6986165252185782, 116941654550250258, 2754405555107729418, 51688464405692879688
OFFSET
0,5
COMMENTS
These permutations are of two types: They are composed of exactly one pair of equal even size cycles with at most one fixed point and any number of odd (>=3) size cycles; OR they are any number of odd (>=3) size cycles with exactly two fixed points.
FORMULA
E.g.f.: (A(x)*(1+x)+x^2/2)*((1+x)/(1-x))^(1/2)*exp(-x) where A(x) = Sum_{n=2,4,6,8,...} Binomial(2n,n)/2 * x^(2n)/(2n)!
EXAMPLE
a(5) = 35 because we have 20 5-permutations of the type (1,2,3)(4)(5) and 15 of the type (1,2)(3,4)(5). These have 2 square roots:(1,3,2)(4)(5),(1,3,2)(4,5) and (1,3,2,4)(5),(3,1,4,2)(5) respectively.
MATHEMATICA
nn=22; a=Sum[Binomial[2n, n]/2x^(2n)/(2n)!, {n, 2, nn, 2}]; Range[0, nn]! CoefficientList[Series[(a(1+x)+x^2/2) ((1+x)/(1-x))^(1/2) Exp[-x], {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 08 2013
STATUS
approved