login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ratios of consecutive terms approach Pi alternating from below and above.
1

%I #23 Mar 01 2020 04:31:16

%S 1,3,10,31,98,307,965,3031,9523,29917,93988,295272,927625,2914219,

%T 9155290,28762191,90359088,283871447,891808453,2801698884,8801796632,

%U 27651659637,86870250776,272910941653,857375009382,2693523030845,8461952165978,26584006759664

%N Ratios of consecutive terms approach Pi alternating from below and above.

%C The alternation of ratios above and below is chosen to match the behavior of ratios of the Fibonacci numbers with respect to the golden ratio.

%H Eric M. Schmidt, <a href="/A214839/b214839.txt">Table of n, a(n) for n = 1..2000</a>

%e a(2) = 3 since 3/1 < Pi, while 4/1 > Pi. a(3) = 10 since 10/3 > Pi, while 9/3 < Pi.

%t PiApprox = Table[1, {i, 1, 40}]; For[i = 2, i < 41, i++, If[Mod[i, 2] == 0, PiApprox[[i]] = Floor[PiApprox[[i - 1]]*Pi], PiApprox[[i]] = Ceiling[PiApprox[[i - 1]]*Pi]]]

%o (Sage)

%o def A214839(numterms) :

%o res = [1]

%o for i in range(1, numterms) :

%o res.append(floor(pi*res[i-1]) if is_odd(i) else ceil(pi*res[i-1]))

%o return res

%o # _Eric M. Schmidt_, Mar 26 2013

%K easy,nonn

%O 1,2

%A _William J. Keith_, Mar 08 2013