login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of formula representations of n using addition, multiplication, exponentiation and the constant 1.
5

%I #38 Feb 22 2021 12:41:36

%S 1,1,2,7,18,58,180,613,2076,7270,25752,92918,338432,1246092,4624536,

%T 17290646,65047436,246079536,935484928,3571960668,13692523960,

%U 52675401248,203299385584,786949008100,3054440440486,11884949139900,46351113658232,181153317512536

%N Number of formula representations of n using addition, multiplication, exponentiation and the constant 1.

%H Alois P. Heinz, <a href="/A214836/b214836.txt">Table of n, a(n) for n = 1..1000</a>

%H Edinah K. Ghang and Doron Zeilberger, <a href="https://arxiv.org/abs/1303.0885">Zeroless Arithmetic: Representing Integers ONLY using ONE</a>, arXiv:1303.0885 [math.CO], 2013.

%H Shalosh B. Ekhad, <a href="http://www.math.rutgers.edu/~zeilberg/tokhniot/oArithFormulas2">Everything About Formulas Representing Integers Using Additions, Multiplication and Exponentiation for integers from 1 to 8000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Postfix_notation">Postfix notation</a>

%H <a href="/index/Com#complexity">Index to sequences related to the complexity of n</a>

%e a(1) = 1: 1.

%e a(2) = 1: 11+.

%e a(3) = 2: 111++, 11+1+.

%e a(4) = 7: 1111+++, 111+1++, 11+11++, 111++1+, 11+1+1+, 11+11+*, 11+11+^.

%e a(5) = 18: 11111++++, 1111+1+++, 111+11+++, 1111++1++, 111+1+1++, 111+11+*+, 111+11+^+, 11+111+++, 11+11+1++, 111++11++, 11+1+11++, 1111+++1+, 111+1++1+, 11+11++1+, 111++1+1+, 11+1+1+1+, 11+11+*1+, 11+11+^1+.

%e All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=1, 1,

%p add(a(i)*a(n-i), i=1..n-1)+

%p add(a(d)*a(n/d), d=divisors(n) minus {1, n})+

%p add(a(root(n, p))*a(p), p=divisors(igcd(seq(i[2],

%p i=ifactors(n)[2]))) minus {0,1}))

%p end:

%p seq(a(n), n=1..40);

%t a[n_] := a[n] = If[n==1, 1, Sum[a[i]*a[n-i], {i, 1, n-1}] + Sum[a[d]*a[n/d], {d, Divisors[n] ~Complement~ {1, n}}] + Sum[a[n^(1/p)] * a[p], {p, Divisors[GCD @@ Table[i[[2]], {i, FactorInteger[n]}]] ~Complement~ {0, 1}}]]; Array[a, 40] (* _Jean-François Alcover_, Apr 11 2017, translated from Maple *)

%Y Cf. A025280, A214833, A214843, A217250, A217253.

%K nonn

%O 1,3

%A _Alois P. Heinz_, Mar 07 2013