Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 27 2024 22:57:32
%S 1,1,3,26,898,128826,82462230,244868962698,3481404811793685,
%T 242641164238940173212
%N Kostant partition function P(2*rho) for root system A_n, where 2*rho is the sum of the positive roots.
%C This is the number of ways of writing the vector 2*rho = (n,n-2,...,-n+2,-n) as a sum of the vectors e_i - e_j for 1 <= i < j <= n+1 with nonnegative integer coefficients. - _Alejandro H. Morales_, May 24 2024
%H MathOverflow, <a href="http://mathoverflow.net/questions/103079">Kostant partition function: asymptotics and specifics</a>.
%F See MathOverflow link for a recurrence.
%e For n = 2, the a(2) = 3 solutions are
%e 0*(1, -1, 0) + 2*(1, 0, -1) + 0*(0, 1, -1) = (2, 0, -2),
%e 1*(1, -1, 0) + 1*(1, 0, -1) + 1*(0, 1, -1) = (2, 0, -2),
%e 2*(1, -1, 0) + 0*(1, 0, -1) + 2*(0, 1, -1) = (2, 0, -2).
%p multcoeff:=proc(n, f, coeffv, k)
%p local i, currcoeff;
%p currcoeff:=f;
%p for i from 1 to n do
%p currcoeff:=`if`(coeffv[i]=0, coeff(series(currcoeff, x[i], k), x[i], 0), coeff(series(currcoeff, x[i], k), x[i]^coeffv[i]));
%p end do;
%p return currcoeff;end proc:F:=n->mul(mul((1-x[i]*x[j]^(-1))^(-1), j=i+1..n), i=1..n):
%p a := n -> multcoeff(n+1, F(n+1), [seq(n-2*i, i=0..n)], 2*n):
%p seq(a(i), i=0..5) # _Alejandro H. Morales_, May 24 2024
%K nonn,more
%O 0,3
%A _N. J. A. Sloane_, Jul 30 2012
%E a(0) and a(7)-a(9) from _Alejandro H. Morales_, May 24 2024