login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 2 (0 <= k <= n).
5

%I #10 Jan 08 2024 09:40:12

%S 0,0,488,0,11660,375552,0,160680,6652366,146387872,0,1678880,86303920,

%T 2298445830,42795288180,0,14771680,918342738,28995928200,629732269188,

%U 10663498973088

%N Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 2 (0 <= k <= n).

%H Didier Arquès and Alain Giorgetti, <a href="https://doi.org/10.1016/S0304-3975(98)00230-8">Counting rooted maps on a surface</a>, Theoret. Comput. Sci. 234 (2000), no. 1-2, 255--272. MR1745078 (2001f:05078).

%e Triangle begins:

%e 0,

%e 0,488,

%e 0,11660,375552,

%e 0,160680,6652366,146387872,

%e 0,1678880,86303920,2298445830,42795288180,

%e 0,14771680,918342738,28995928200,629732269188,10663498973088,

%e ...

%Y Diagonals give A118449, A214804, A214805, A214807. Cf. A214337.

%K nonn,tabl

%O 0,3

%A _N. J. A. Sloane_, Jul 28 2012