login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = 1/A(-x*A(x)^7).
8

%I #6 Aug 22 2024 18:30:44

%S 1,2,16,144,1280,12416,156288,2445952,39005696,569584128,7551139840,

%T 94905663488,1200235880448,15657039026176,204235121909760,

%U 2589347043356672,34080849916796928,554466780012625920,11679936697324273664,269604415927633805312,6025264829519275556864

%N G.f. satisfies: A(x) = 1/A(-x*A(x)^7).

%C Compare g.f. to: G(x) = 1/G(-x*G(x)^7) when G(x) = 1 + x*G(x)^4 (A002293).

%C An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^7); for example, (*) is satisfied by G(x) = F(m*x) = 1 + m*x*F(m*x)^4 for all m, where F(x) is the g.f. of A002293.

%F The g.f. of this sequence is the limit of the recurrence:

%F (*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^7))/2 starting at G_0(x) = 1+2*x.

%e G.f.: A(x) = 1 + 2*x + 16*x^2 + 144*x^3 + 1280*x^4 + 12416*x^5 + 156288*x^6 +...

%e A(x)^4 = 1 + 8*x + 88*x^2 + 992*x^3 + 10896*x^4 + 121600*x^5 + 1492480*x^6 +...

%e A(x)^7 = 1 + 14*x + 196*x^2 + 2632*x^3 + 33712*x^4 + 424032*x^5 + 5484864*x^6 +...

%o (PARI) {a(n)=local(A=1+2*x);for(i=0,n,A=(A+1/subst(A,x,-x*A^7+x*O(x^n)))/2);polcoeff(A,n)}

%o for(n=0,31,print1(a(n),", "))

%Y Cf. A214761, A214762, A214763, A214764, A214765, A214766, A214768, A214769.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 29 2012