|
|
A214709
|
|
Least m>0 such that n!-m and 2^n-m are relatively prime.
|
|
1
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,11
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
gcd(11!-1,2^11-1) = 23, gcd(11!-2, 2^11-2) = 2, gcd(11!-3,2^11-3) = 1, so a(11) = 3.
|
|
MATHEMATICA
|
Table[m = 1; While[GCD[n! - m, 2^n - m] != 1, m++]; m, {n, 1, 140}]
|
|
CROSSREFS
|
Cf. A214074, A214707.
Sequence in context: A328516 A328517 A007362 * A060268 A339877 A030328
Adjacent sequences: A214706 A214707 A214708 * A214710 A214711 A214712
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Jul 27 2012
|
|
STATUS
|
approved
|
|
|
|