login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(n,k) = Fibonacci(n) represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals.
10

%I #28 Jan 08 2021 17:42:46

%S 1,1,1,1,1,11,1,1,2,111,1,1,2,11,11111,1,1,2,3,21,11111111,1,1,2,3,12,

%T 112,1111111111111,1,1,2,3,11,22,221,111111111111111111111,1,1,2,3,5,

%U 14,111,1221,1111111111111111111111111111111111

%N A(n,k) = Fibonacci(n) represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals.

%C The digit set for bijective base-k numeration is {1, 2, ..., k}.

%H Alois P. Heinz, <a href="/A214679/b214679.txt">Antidiagonals n = 1..13</a>

%H R. R. Forslund, <a href="http://www.emis.de/journals/SWJPAM/Vol1_1995/rrf01.ps">A logical alternative to the existing positional number system</a>, Southwest Journal of Pure and Applied Mathematics, Vol. 1, 1995, 27-29.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Zerofree.html">Zerofree</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bijective_numeration">Bijective numeration</a>

%F A(n,k) = A214676(A000045(n),k).

%e Square array A(n,k) begins:

%e : 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e : 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e : 11, 2, 2, 2, 2, 2, 2, 2, 2, ...

%e : 111, 11, 3, 3, 3, 3, 3, 3, 3, ...

%e : 11111, 21, 12, 11, 5, 5, 5, 5, 5, ...

%e : 11111111, 112, 22, 14, 13, 12, 11, 8, 8, ...

%e : 1111111111111, 221, 111, 31, 23, 21, 16, 15, 14, ...

%e : 111111111111111111111, 1221, 133, 111, 41, 33, 27, 25, 23, ...

%p with(combinat):

%p A:= proc(n, b) local d, l, m; m:= fibonacci(n); l:= NULL;

%p while m>0 do d:= irem(m, b, 'm');

%p if d=0 then d:=b; m:=m-1 fi;

%p l:= d, l

%p od; parse(cat(l))

%p end:

%p seq(seq(A(n, 1+d-n), n=1..d), d=1..10);

%t A[n_, b_] := Module[{d, l, m}, m = Fibonacci@n; l = Nothing; While[m > 0, {m, d} = QuotientRemainder[m, b]; If[d == 0, d = b; m--]; l = {d, l}]; FromDigits @ Flatten @ l];

%t Table[A[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten (* _Jean-François Alcover_, May 28 2019, from Maple *)

%Y Columns k=1-9 give: A108047, A085652, A282234, A282235, A282236, A282237, A282238, A282239, A282240.

%Y Cf. A000045, A214676.

%K nonn,tabl

%O 1,6

%A _Alois P. Heinz_, Jul 25 2012