login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214668
G.f. satisfies: A(x) = 1 + 9*x*A(x)^(4/3).
1
1, 9, 108, 1458, 21060, 318087, 4960116, 79227720, 1289516436, 21308126895, 356506456680, 6027199821864, 102804351279084, 1766931074710515, 30570993847594800, 532022685332573016, 9306598678048938420, 163549467160708850910, 2886019647490699098588
OFFSET
0,2
COMMENTS
Radius of convergence of g.f. A(x) is r = 1/(3*4^(4/3)) where A(r) = 4.
Self-convolution cube of A078532.
FORMULA
a(n) = 9^n * binomial(4*n/3, n) / (n/3 + 1).
From Karol A. Penson, Mar 24 2024: (Start)
G.f. = 4F3([1/4, 1/2, 3/4, 1], [1/3, 2/3, 2], 6912*z^3) + 9*z*3F2([7/12, 5/6, 13/12], [2/3, 7/3], 6912*z^3) + 108*z^2*3F2([11/12, 7/6, 17/12], [4/3, 8/3], 6912*z^3);
a(n) = Integral_{x=0..6912^(1/3)} x^n*W(x), where
W(x) = h1(x) + h2(x) + h3(x), with
h1(x) = sqrt(6)*3F2([-3/4, 7/12, 11/12], [1/2, 3/4], x^3/6912)/(18*Pi*x^(1/4)),
h2(x) = sqrt(x)*3F2([-1/2, 5/6, 7/6], [3/4, 5/4], x^3/6912)/(36*Pi),
h3(x) = (5*sqrt(6)*x^(5/4)*3F2([-1/4, 13/12, 17/12], [5/4, 3/2], x^3/6912))/(5184*Pi).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, 6912^(1/3)). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-1/4), and for x > 0 is first monotonically decreasing up to a local minimum at x around x = 2, then it is monotonically increasing up to a local maximum at x around x = 10.8, and then finally is monotonically decreasing up to zero at x = 6912^(1/3). For x -> 6912^(1/3), W'(x) tends to -infinity. (End)
EXAMPLE
G.f.: A(x) = 1 + 9*x + 108*x^2 + 1458*x^3 + 21060*x^4 + 318087*x^5 + ...
where A(x) = 1 + 9*x*A(x)^(4/3).
Radius of convergence: r = 1/(3*4^(4/3)) = 0.052496710...
Related expansions:
A(x)^(4/3) = 1 + 12*x + 162*x^2 + 2340*x^3 + 35343*x^4 + 551124*x^5 + ... + a(n+1)/9*x^n + ...
A(x)^(1/3) = 1 + 3*x + 27*x^2 + 315*x^3 + 4158*x^4 + 59049*x^5 + 880308*x^6 + 13586859*x^7 + 215233605*x^8 + ... + A078532(n)*x^n + ...
PROG
(PARI) {a(n)=9^n*binomial(4*n/3, n)/(n/3+1)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A =1+9*x*(A+x*O(x^n))^(4/3)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2012
STATUS
approved