%I
%S 11,13,19,23,29,31,37,43,53,59,61,73,79,89,97,101,223,263,283,401,409,
%T 443,601,607,809,823,829,883,1013,1019,1031,1033,1039,1051,1091,1093,
%U 1097,1103,1109,1117,1123,1129,1151,1163,1171,1181,1187,1193,1213,1231,1259
%N Primes p such that the sum of the digits plus the product of the digits add to a prime.
%F {p in A000040: A061762(p) in A000040}.  _R. J. Mathar_, Aug 13 2012
%e 11 is in the sequence because A061762(11) = 3 is prime.
%t f[n_] := Module[{in = IntegerDigits[n]}, Times @@ in + Plus @@ in];Select[Prime[Range[300]], PrimeQ[f[#]] &]
%K nonn,base
%O 1,1
%A _Vicente Izquierdo Gomez_, Aug 13 2012
