login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3X3X3 triangular 0..n arrays with every horizontal row having the same average value
1

%I #6 Jul 23 2012 13:12:36

%S 2,23,62,157,312,601,986,1619,2426,3589,5028,6997,9314,12371,15914,

%T 20377,25488,31789,38846,47399,56906,68161,80592,95137,111002,129383,

%U 149342,172141,196800,224761,254762,288563,324722,365077,408132,455941,506666

%N Number of 3X3X3 triangular 0..n arrays with every horizontal row having the same average value

%C Row 3 of A214595

%H R. H. Hardin, <a href="/A214596/b214596.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-2) +2*a(n-3) -3*a(n-4) -6*a(n-5) +6*a(n-7) +3*a(n-8) -2*a(n-9) -3*a(n-10) +a(n-12).

%F Empirical: G.f. ( -x*(2+23*x+56*x^2+84*x^3+86*x^4+87*x^5+60*x^6+23*x^7-2*x^9+x^11) ) / ( (1+x+x^2)^2*(1+x)^3*(x-1)^5 ). - _R. J. Mathar_, Jul 23 2012

%e Some solutions for n=4

%e ....3......2......1......1......2......2......3......2......3......2......2

%e ...2.4....1.3....1.1....2.0....3.1....0.4....3.3....1.3....4.2....4.0....0.4

%e ..2.4.3..3.2.1..1.0.2..1.1.1..3.1.2..2.0.4..3.2.4..3.3.0..2.3.4..1.2.3..0.3.3

%K nonn

%O 1,1

%A _R. H. Hardin_ Jul 22 2012