login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214564 Number T(n,k) of totally symmetric plane partitions with largest part <= n and exactly k orbits under action of the symmetric group S_3; triangle T(n,k), n>=0, 0<=k<=A000292(n), read by rows. 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 20, 20, 20, 19, 18, 17, 15, 13, 12, 10, 8, 7, 5, 4, 3, 2, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Alois P. Heinz, Rows n = 0..21

C. Koutschan, M. Kauers, and D. Zeilberger, Proof of George Andrews’s and David Robbins’s q-TSPP conjecture, PNAS (2011), 108: 2196-2199.

R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

FORMULA

G.f. of row n: Product_{1<=i<=j<=k<=n} (1-q^(i+j+k-1))/(1-q^(i+j+k-2)).

EXAMPLE

Triangle T(n,k) begins:

  1;

  1, 1;

  1, 1, 1, 1, 1;

  1, 1, 1, 2, 2, 2, 2, 2, 1,  1,  1;

  1, 1, 1, 2, 3, 3, 4, 5, 5,  5,  6,  5,  5,  5,  4,  3,  3,  2,  1,  1,  1;

  1, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 20, 20, 20, 19, ...

  ...

MAPLE

gf:= n-> simplify(mul(mul(mul( (1-q^(i+j+k-1))/

         (1-q^(i+j+k-2)), i=1..j), j=1..k), k=1..n)):

T:= n-> seq(coeff(gf(n), q, k), k=0..n*(n+1)*(n+2)/6):

seq(T(n), n=0..7);

CROSSREFS

Row sums give: A005157.

Cf. A000292.

Sequence in context: A016016 A345112 A063059 * A102675 A177849 A143544

Adjacent sequences:  A214561 A214562 A214563 * A214565 A214566 A214567

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Jul 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 02:00 EDT 2021. Contains 348270 sequences. (Running on oeis4.)