login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 0's in binary expansion of n^n.
2

%I #17 Dec 24 2024 12:52:53

%S 0,0,2,1,8,6,10,9,24,15,23,19,34,21,31,26,64,39,49,40,61,44,63,46,95,

%T 59,82,61,98,79,97,71,160,88,112,92,129,96,115,109,160,105,131,118,

%U 178,125,159,134,228,138,178,146,207,141,183,154,245,161,192,167,231,195

%N Number of 0's in binary expansion of n^n.

%H Alois P. Heinz, <a href="/A214562/b214562.txt">Table of n, a(n) for n = 0..16383</a>

%F a(n) = A023416(A000312(n)).

%F a(2^k) = k*2^k. - _Chai Wah Wu_, Dec 24 2024

%o (Python)

%o for n in range(300):

%o c = 0

%o b = int(n**n)

%o while b>0:

%o c += 1-(b&1)

%o b//=2

%o print( c, end=", ")

%o (PARI) vector(66, n, b=binary((n-1)^(n-1)); sum(j=1, #b, 1-b[j])) /* _Joerg Arndt_, Jul 21 2012 */

%Y Cf. A023416, A078565, A214560.

%K nonn,base,changed

%O 0,3

%A _Alex Ratushnyak_, Jul 21 2012