login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 1's in binary expansion of n^n.
2

%I #38 Oct 13 2022 14:57:43

%S 1,1,1,4,1,6,6,11,1,14,11,20,10,28,23,33,1,31,27,41,26,49,36,59,16,58,

%T 41,68,37,62,51,83,1,79,61,88,58,97,85,98,53,115,96,116,63,123,96,128,

%U 41,138,105,144,90,163,128,164,81,172,148,181,124,167,134,201,1

%N Number of 1's in binary expansion of n^n.

%C a(n) + A214562(n) = 1+floor(log_2(n^n)) = 1, 1, 3, 5, 9, 12, 16, 20, 25, 29, 34, 39, 44, 49... is the number of binary digits in n^n. - _R. J. Mathar_, Jul 22 2012

%H Alois P. Heinz, <a href="/A214561/b214561.txt">Table of n, a(n) for n = 0..16384</a>

%F a(n) = A000120(A000312(n)).

%F a(2^k)=1.

%p a:= proc(n) option remember; local m, r;

%p m, r:= n^n, 0;

%p while m>0 do r:= r +irem(m, 2, 'm') od; r

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jul 21 2012

%t Table[Count[IntegerDigits[n^n,2],1],{n,1,64}] (* _Geoffrey Critzer_, Sep 30 2013 *)

%t Join[{1},Table[DigitCount[n^n,2,1],{n,100}]] (* _Harvey P. Dale_, Oct 13 2022 *)

%o (Python)

%o for n in range(300):

%o c = 0

%o b = n**n

%o while b>0:

%o c += b&1

%o b//=2

%o print(c, end=',')

%o (Python)

%o def a(n): return bin(n**n)[2:].count('1')

%o print([a(n) for n in range(65)]) # _Michael S. Branicky_, May 22 2021

%o (PARI) vector(66, n, b=binary((n-1)^(n-1)); sum(j=1, #b, b[j])) /* _Joerg Arndt_, Jul 21 2012 */

%Y Cf. A000120, A159918, A079584.

%K nonn

%O 0,4

%A _Alex Ratushnyak_, Jul 21 2012