%I #22 Nov 23 2022 13:33:00
%S 495,549945,554999445,555499994445,555549999944445,555554999999444445,
%T 555555499999994444445,555555549999999944444445,
%U 555555554999999999444444445,555555555499999999994444444445,555555555549999999999944444444445
%N Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 5(n)//4//9(n+1)//4(n)//5.
%C The symbols // denote concatenation of digits in the definition, and d(n) denotes n repetitions of d, n >= 0.
%C Conjecture: satisfies a linear recurrence having signature (1111, -112110, 1111000, -1000000). - _Harvey P. Dale_, Nov 23 2022
%H Syed Iddi Hasan, <a href="/A214555/b214555.txt">Table of n, a(n) for n = 0..165</a>
%F If d(n) denotes n repetitions of the digit d, then a(n) = 5(n)49(n+1)4(n)5, where n >= 0.
%e 549945 is a fixed point of the mapping for n=1.
%t Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n+1,9],PadRight[{},n,4],{5}]],{n,0,15}] (* _Harvey P. Dale_, Nov 23 2022 *)
%Y Cf. A214556-A214559.
%K nonn,base
%O 0,1
%A _Syed Iddi Hasan_, Jul 20 2012