login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Reed Kelly's sequence: a(n) = (a(n-1) + a(n-3))/gcd(a(n-1), a(n-3)) with a(0) = a(1) = a(2) = 1.
32

%I #83 Mar 28 2022 11:20:20

%S 1,1,1,2,3,4,3,2,3,2,2,5,7,9,14,3,4,9,4,2,11,15,17,28,43,60,22,65,25,

%T 47,112,137,184,37,174,179,216,65,244,115,36,70,37,73,143,180,253,36,

%U 6,259,295,301,80,75,376,57,44,105,54,49,22,38,87,109,147

%N Reed Kelly's sequence: a(n) = (a(n-1) + a(n-3))/gcd(a(n-1), a(n-3)) with a(0) = a(1) = a(2) = 1.

%C Like Narayana's Cows sequence A000930, except that the sums are divided by the greatest common divisor (gcd) of the prior terms.

%C It is a strong conjecture that 8 and 10 are missing from this sequence, but it would be nice to have a proof! See A214321 for the conjectured values. [I have often referred to this as "Reed Kelly's sequence" in talks.] - _N. J. A. Sloane_, Feb 18 2017

%H T. D. Noe and N. J. A. Sloane, <a href="/A214551/b214551.txt">Table of n, a(n) for n = 0..10000</a>

%H Benoit Cloitre, <a href="/A214551/a214551.png">Graph of a(n)^(1/n) for n=1 up to 381817</a>

%H N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=9ogbsh8KuEM">Exciting Number Sequences</a> (video of talk), Mar 05 2021.

%F It appears that, very roughly, a(n) ~ constant*exp(0.123...*n). - _N. J. A. Sloane_, Sep 07 2012. See next comment for more precise estimate.

%F If a(n)^(1/n) converges the limit should be near 1.126 (see link). - _Benoit Cloitre_, Nov 08 2015

%F _Robert G. Wilson v_ reports that at around 10^7 terms a(n)^(1/n) is about exp(1/8.4). - _N. J. A. Sloane_, May 05 2021

%e a(14)=9, a(16)=3, therefore a(17)=(9+3)/gcd(9,3) = 12/3 = 4.

%e a(24)=28, a(26)=60, therefore a(27)=(28+60)/gcd(28,60) = 88/4 = 22.

%p a:= proc(n) a(n):= `if`(n<3, 1, (a(n-1)+a(n-3))/igcd(a(n-1), a(n-3))) end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Oct 18 2012

%t t = {1, 1, 1}; Do[AppendTo[t, (t[[-1]] + t[[-3]])/GCD[t[[-1]], t[[-3]]]], {100}]

%t f[l_List] := Append[l, (l[[-1]] + l[[-3]])/GCD[l[[-1]], l[[-3]]]]; Nest[f, {1, 1, 1}, 62] (* _Robert G. Wilson v_, Jul 23 2012 *)

%t RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(a[n-1]+a[n-3])/GCD[ a[n-1], a[n-3]]},a,{n,70}] (* _Harvey P. Dale_, May 06 2014 *)

%o (Perl)

%o use bignum;

%o my @seq = (1, 1, 1);

%o print "1 1\n2 1\n3 1\n";

%o for ( my $i = 3; $i < 400; $i++ )

%o {

%o my $next = ( $seq[$i-1] + $seq[$i-3] ) /

%o gcd( $seq[$i-1], $seq[$i-3] );

%o my $ind = $i+1;

%o print "$ind $next\n";

%o push( @seq, $next );

%o }

%o sub gcd {

%o my ($x, $y) = @_;

%o ($x, $y) = ($y, $x % $y) while $y;

%o return $x;

%o }

%o (Haskell)

%o a214551 n = a214551_list !! n

%o a214551_list = 1 : 1 : 1 : zipWith f a214551_list (drop 2 a214551_list)

%o where f u v = (u + v) `div` gcd u v

%o -- _Reinhard Zumkeller_, Jul 23 2012

%o (Sage)

%o def A214551Rec():

%o x, y, z = 1, 1, 1

%o yield x

%o while True:

%o x, y, z = y, z, (z + x)//gcd(z, x)

%o yield x

%o A214551 = A214551Rec();

%o print([next(A214551) for _ in range(65)]) # _Peter Luschny_, Oct 18 2012

%o (PARI) first(n)=my(v=vector(n+1)); for(i=1,min(n,3),v[i]=1); for(i=4,#v, v[i]=(v[i-1]+v[i-3])/gcd(v[n-1],v[i-3])); v \\ _Charles R Greathouse IV_, Jun 21 2017

%o (Python)

%o from math import gcd

%o def aupton(nn):

%o alst = [1, 1, 1]

%o for n in range(3, nn+1):

%o alst.append((alst[n-1] + alst[n-3])//gcd(alst[n-1], alst[n-3]))

%o return alst

%o print(aupton(64)) # _Michael S. Branicky_, Mar 28 2022

%Y Similar to A000930. Cf. A341312, A341313, which are also similar.

%Y Cf. also A214320, A214321, A214322, A214323 (gcd's), A219898 (records), A214324, A214325, A214330, A214331, A214809, A227836, A227837.

%Y Starting with a(2) = 3 gives A214626. - _Reinhard Zumkeller_, Jul 23 2012

%K nonn,nice

%O 0,4

%A _Reed Kelly_, Jul 20 2012