login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1 if n is four times a triangular number, -1 if one more than twelve times a triangular number else 0.
2

%I #15 Mar 12 2021 22:24:46

%S 1,-1,0,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

%T 0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

%U 0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1

%N a(n) = 1 if n is four times a triangular number, -1 if one more than twelve times a triangular number else 0.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H Antti Karttunen, <a href="/A214505/b214505.txt">Table of n, a(n) for n = 0..65537</a>

%H S. Cooper and M. Hirschhorn, <a href="http://dx.doi.org/10.1216/rmjm/1008959672">On some infinite product identities</a>, Rocky Mountain J. Math., 31 (2001) 131-139. see p. 134 Theorem 5.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of psi(x^4) - x * psi(x^12) in powers of x where psi() is a Ramanujan theta function.

%F Expansion of f(-x, x^5) * f(-x^4, -x^8) / f(x, -x) in powers of x where f(,) is the Ramanujan two-variable theta function.

%F Euler transform of period 24 sequence [ -1, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1, ...].

%F G.f.: (Sum_{k} x^(2*k*(k + 1)) - x^(6*k*(k + 1) + 1)) / 2.

%F a(n) = A214295(2*n + 1).

%e 1 - x + x^4 + x^12 - x^13 + x^24 - x^37 + x^40 + x^60 - x^73 + x^84 + ...

%e q - q^3 + q^9 + q^25 - q^27 + q^49 - q^75 + q^81 + q^121 - q^147 + q^169 + ...

%o (PARI) {a(n) = n = 2*n + 1; issquare(n) - issquare(3*n)}

%Y Cf. A010052, A214295.

%K sign

%O 0,1

%A _Michael Somos_, Jul 19 2012