%I #14 Dec 09 2012 09:18:39
%S 0,6,3,9,9,6,3,93,3,54,18,96,213,297,1206,258,312,201,261,1206,1158,
%T 396,1062,216,708,762,816,678,3579,762,831,2106,4734,576,333,633,213,
%U 2766,363,2454,1464,2007,4551,3183,1497,4899,198,66,9984,2847,276,3051
%N Smallest k>=0 such that (3^n-k)*2^n-1 and (3^n-k)*2^n+1 are a twin prime pair.
%C Conjecture : there is always one such k for each n>0.
%C As N increases, the average of a(n)/n^2 over n=1 to N appears to approach 1.1
%H Pierre CAMI, <a href="/A214497/b214497.txt">Table of n, a(n) for n = 1..500</a>
%p A214497 := proc(n)
%p local k;
%p for k from 0 do
%p p := (3^n-k)*2^n-1 ;
%p if isprime(p) and isprime(p+2) then
%p return k;
%p end if;
%p end do:
%p end proc:
%p seq(A214497(n),n=1..80) ; # _R. J. Mathar_, Jul 23 2012
%t sk[n_]:=Module[{k=0,c},c=(3^n-k)2^n;While[!PrimeQ[c-1] || !PrimeQ[c+1],k++;c=(3^n-k)2^n];k]; Array[sk,60] (* _Harvey P. Dale_, Dec 09 2012 *)
%o (PFGW64 and SCRIPTIFY)
%o SCRIPT
%o DIM nn,0
%o DIM kk
%o DIM jj
%o DIMS tt
%o OPENFILEOUT myfile,a(n).txt
%o OPENFILEOUT myf,b(n).txt
%o LABEL loopn
%o SET nn,nn+1
%o SET jj,0
%o IF nn>500 THEN END
%o SET kk,-1
%o LABEL loopk
%o SET kk,kk+1
%o SETS tt,%d,%d\,;nn;kk
%o PRP (3^nn-kk)*2^nn-1,tt
%o IF ISPRP THEN GOTO a
%o IF ISPRIME THEN GOTO a
%o GOTO loopk
%o LABEL a
%o SET jj,jj+1
%o PRP (3^nn-kk)*2^nn+1,tt
%o IF ISPRP THEN GOTO d
%o IF ISPRIME THEN GOTO d
%o GOTO loopk
%o LABEL d
%o WRITE myfile,tt
%o SETS tt,%d,%d\,;nn;jj
%o WRITE myf,tt
%o GOTO loopn
%Y Cf. A214495-A214498.
%K nonn
%O 1,2
%A _Pierre CAMI_, Jul 20 2012