%I #8 Feb 21 2023 09:59:43
%S 5,857,311,17,31391,3461,1427,12917,1997,4517,41,20747,107,1871,1487,
%T 4637,2081,347,7877,23057,80777,1091,18041,641,461,5231,21017,881,
%U 4967,45821,1607,15731,165311,17027,35591,26261,11777,8537,64151,101111,82757,23741
%N Smallest prime p such that n primes exist between the prime triple (p, p+2, p+6) and the next prime triple.
%e a(3)= 17 because there exists 3 primes 29, 31 and 37 are between (17, 19,23) and (41,43,47).
%p A214450 := proc(n)
%p local j, hi, lo ;
%p if n = 0 then
%p 3;
%p else
%p for j from 1 do
%p hi := numtheory[pi]( A022004 (j+1)) ;
%p lo := numtheory[pi]( A098412 (j)) ;
%p if hi-lo = n+1 then
%p return A022004 (j);
%p end if;
%p end do:
%p end if;
%p end proc: # [Program from R. J. Mathar, adapted for this sequence (see A089637)].
%Y Cf. A022004, A098412, A089637.
%K nonn
%O 0,1
%A _Michel Lagneau_, Jul 18 2012