login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of Sum_{k=0..n} n^k/k!.
5

%I #30 Apr 21 2021 12:03:51

%S 1,1,1,3,12,5,72,315,2240,567,1814400,77,239500800,868725,7175168,

%T 49116375,2092278988800,14889875,3201186852864000,14849255421,

%U 3783802880000,3543572316375,562000363888803840000,2505147019375,496358721386591551488

%N Denominator of Sum_{k=0..n} n^k/k!.

%C Apparently, the three sequences T_1(n) = Sum_{k=1..n} n^(k-1)/k!, T_2(n) = Sum_{k=0..n} n^k/k!, and T_3(n) = Sum_{k=1..n} n^k/k!, with numerators in A119029, A120266, and A120267, respectively, have the same denominators, listed in the current sequence. This, however, is not immediately obvious. - _Petros Hadjicostas_, May 12 2020

%H Michel Marcus, <a href="/A214401/b214401.txt">Table of n, a(n) for n = 1..150</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/ExponentialSumFunction.html">Exponential Sum Function</a>.

%F a(n) = n!/A214402(n).

%t Denominator[Table[Sum[n^k/k!, {k, 0, n}], {n, 1, 30}]]

%o (PARI) a(n) = denominator(sum(k=0, n, n^k/k!)); \\ _Michel Marcus_, Apr 20 2021

%Y Numerators are A120266.

%Y Cf. also A063170, A090878, A093101, A119029, A120267, A214402.

%K frac,nonn

%O 1,4

%A _Jonathan Sondow_, Jul 15 2012