The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214316 Expansion of psi(x)^2 - 5 * x * psi(x^5)^2 in powers of x where psi() is a Ramanujan theta function. 3

%I

%S 1,-3,1,2,2,0,-7,2,0,2,2,-3,1,2,0,2,-6,0,2,0,1,-6,2,0,2,2,0,2,2,2,1,

%T -11,0,0,2,0,-6,2,2,2,0,0,3,2,0,2,-6,0,2,2,0,-6,0,0,0,4,-7,2,2,0,2,-3,

%U 0,0,2,2,-6,2,0,2,2,0,3,2,0,0,-6,0,2,2,0

%N Expansion of psi(x)^2 - 5 * x * psi(x^5)^2 in powers of x where psi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328; see p. 314 eq. (2.7)

%H G. C. Greubel, <a href="/A214316/b214316.txt">Table of n, a(n) for n = 0..2500</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of f(-x) * phi(-x) / chi(-x^5) in powers of x where phi(), chi(), f() are Ramanujan theta functions.

%F Expansion of q^(-1/4) * eta(q)^3 * eta(q^10) / (eta(q^2) * eta(q^5)) in powers of q.

%F Euler transform of period 10 sequence [ -3, -2, -3, -2, -2, -2, -3, -2, -3, -2, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 10 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A094247.

%F a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = a(n).

%e G.f. = 1 - 3*x + x^2 + 2*x^3 + 2*x^4 - 7*x^6 + 2*x^7 + 2*x^9 + 2*x^10 - 3*x^11 + ...

%e G.f. = q - 3*q^5 + q^9 + 2*q^13 + 2*q^17 - 7*q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^10] / (QPochhammer[ x^2] QPochhammer[ x^5]), {x, 0, n}]

%t a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^2]^2 - 5 EllipticTheta[ 2, 0, q^10]^2) / 4, {q, 0, 4 n + 1}]

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^10 + A) / (eta(x^2 + A) * eta(x^5 + A)), n))}

%Y Cf. A094247.

%K sign

%O 0,2

%A _Michael Somos_, Jul 12 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 20:17 EDT 2021. Contains 346294 sequences. (Running on oeis4.)