login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 0..2 colorings of a 6X(n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order
1

%I #4 Jul 04 2012 06:23:26

%S 243,32,31307,38880,6214031,19920544,1400634371,7553900384,

%T 333634652748,2494628888576,82026663625611,764829357599840,

%U 20608425761163112,224394973731792512,5262099379377937907,64035391192104272352

%N Number of 0..2 colorings of a 6X(n+1) array circular in the n+1 direction with new values 0..2 introduced in row major order

%C Row 6 of A214101

%H R. H. Hardin, <a href="/A214105/b214105.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 31*a(n-1) +13*a(n-2) -9267*a(n-3) +78227*a(n-4) +638291*a(n-5) -10708528*a(n-6) +6150128*a(n-7) +536501107*a(n-8) -2033164909*a(n-9) -11904211731*a(n-10) +84436380845*a(n-11) +77412169368*a(n-12) -1706545467464*a(n-13) +1811776247266*a(n-14) +19304523636130*a(n-15) -47889544867794*a(n-16) -117456145818834*a(n-17) +525235170302850*a(n-18) +213625076617474*a(n-19) -3290233046207679*a(n-20) +2089968288107233*a(n-21) +12240390785511137*a(n-22) -17809441292578591*a(n-23) -24715178090410237*a(n-24) +65443537376780099*a(n-25) +13041358597027717*a(n-26) -135368827365208891*a(n-27) +55864333777538925*a(n-28) +159221485635535469*a(n-29) -143613070053648912*a(n-30) -91023260463361328*a(n-31) +154989094709985664*a(n-32) +916845169402240*a(n-33) -84356499484710528*a(n-34) +27208165877275008*a(n-35) +20331945994935040*a(n-36) -12539801202332928*a(n-37) -634009016424448*a(n-38) +1714850626521088*a(n-39) -304729578209280*a(n-40)

%e Some solutions for n=4

%e ..0..1..0..2..1....0..1..2..0..1....0..1..0..2..1....0..1..2..1..2

%e ..2..0..2..1..0....1..0..1..2..0....2..0..2..1..0....1..2..0..2..0

%e ..1..2..1..0..2....0..1..0..1..2....0..1..0..2..1....2..0..2..0..1

%e ..2..0..2..1..0....1..0..1..2..0....2..0..2..1..0....1..2..1..2..0

%e ..0..1..0..2..1....0..2..0..1..2....0..2..0..2..1....0..1..2..1..2

%e ..1..2..1..0..2....2..1..2..0..1....1..0..1..0..2....1..2..1..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Jul 04 2012