login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n!^(1/3)).
6

%I #24 Jan 20 2024 11:29:06

%S 1,1,1,1,2,4,8,17,34,71,153,341,782,1839,4434,10935,27555,70852,

%T 185686,495486,1344956,3710632,10397338,29568648,85290741,249391641,

%U 738821756,2216465268,6730493989,20678209929,64252006059,201840008711,640802084315

%N a(n) = floor(n!^(1/3)).

%H Vincenzo Librandi, <a href="/A214083/b214083.txt">Table of n, a(n) for n = 0..1000</a>

%t Table[Floor[n!^(1/3)], {n, 0, 60}] (* _Vincenzo Librandi_, Feb 08 2013 *)

%o (Derive) PROG(y := [], n := 35, LOOP(IF(n = -1, RETURN y), y := ADJOIN(FLOOR(n!^(1/3)), y), n := n - 1))

%o (Magma) [Floor(Factorial(n)^(1/3)): n in [0..40]]; // _Vincenzo Librandi_, Feb 08 2013

%o (PARI) a(n) = sqrtnint(n!,3); \\ _Michel Marcus_, Jan 11 2016

%Y Cf. A214078, A214079, A214080, A214081, A214083, A055228, A055226.

%K easy,nonn

%O 0,5

%A _Mohammad K. Azarian_, Dec 22 2012