login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
23

%I #39 Jan 12 2024 14:10:15

%S 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,2,5,1,0,1,1,2,6,14,1,0,1,1,2,6,23,

%T 42,1,0,1,1,2,6,24,103,132,1,0,1,1,2,6,24,119,513,429,1,0,1,1,2,6,24,

%U 120,694,2761,1430,1,0,1,1,2,6,24,120,719,4582,15767,4862,1,0

%N Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%C A(n,k) is also the sum of the squares of numbers of standard Young tableaux (SYT) of height <= k over all partitions of n.

%C This array is a larger and reflected version of A047888.

%C Column k>1 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - _Vaclav Kotesovec_, Sep 10 2014

%H Alois P. Heinz, <a href="/A214015/b214015.txt">Antidiagonals n = 0..70, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Longest_increasing_subsequence_problem">Longest increasing subsequence problem</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%e A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.

%e A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:

%e +------+ +------+ +---------+ +---------+ +---------+ +------------+

%e | 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |

%e | 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+

%e +------+ +------+ +---+ +---+ +---+

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 2, 2, 2, 2, 2, 2, ...

%e 0, 1, 5, 6, 6, 6, 6, 6, ...

%e 0, 1, 14, 23, 24, 24, 24, 24, ...

%e 0, 1, 42, 103, 119, 120, 120, 120, ...

%e 0, 1, 132, 513, 694, 719, 720, 720, ...

%e 0, 1, 429, 2761, 4582, 5003, 5039, 5040, ...

%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j

%p +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

%p end:

%p g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,

%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):

%p A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):

%p seq(seq(A(n, d-n), n=0..d), d=0..14);

%t h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];

%t g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];

%t A[n_, k_] := If[k >= n, n!, g[n, k, {}]];

%t Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 09 2013, translated from Maple *)

%Y Columns k=0-10 give: A000007, A000012, A000108, A005802, A047889, A047890, A052399, A072131, A072132, A072133, A072167.

%Y Differences between A000142 and columns k=0-9 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677.

%Y Main diagonal and first lower diagonal give: A000142, A033312.

%Y A(2n,n-1) gives A269042(n) for n>0.

%Y Cf. A047887, A047888, A182172, A208447, A214152, A267479.

%K nonn,tabl

%O 0,13

%A _Alois P. Heinz_, Jul 01 2012