login
A213945
Triangle by rows, generated from aerated sequences of 1's.
0
1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 11, 1, 1, 1, 1, 4, 24, 1, 1, 1, 1, 2, 7, 51, 1, 1, 1, 1, 1, 4, 12, 107, 1, 1, 1, 1, 1, 2, 6, 21, 222, 1, 1, 1, 1, 1, 1, 4, 9, 36, 457, 1, 1, 1, 1, 1, 1, 2, 6, 14, 61, 935, 1, 1, 1, 1, 1, 1, 1, 4, 8, 22, 103, 1904, 1, 1, 1, 1, 1, 1, 1, 2, 6, 11, 34, 173, 3863
OFFSET
0,6
COMMENTS
Row sums are powers of 2. The right border is a variant of A027934 in which the 0 of the latter is replaced by a 1.
FORMULA
Form an array in which rows are INVERT transforms of sequences of 1's starting (1,1,1,...) with row 0; then the INVERT transforms of 1's aerated with one zero (row 1); with two zeros, (row 2); three zeros, (row 3); and so on.
EXAMPLE
First few rows of the array are:
1, 2, 4, 8, 16, 32, 64, 128, 256,...
1, 1, 2, 3,..5,..8,.13,..21,..34,...
1, 1, 1, 2,..3,..4,..6,...9,..13,...
1, 1, 1, 1, 2,..3,..4,...5,...7,...
... Then, take finite differences from the top -> down, getting the triangle:
1;
1, 1;
1, 1, 2;
1, 1, 1, 5;
1, 1, 1, 2, 11;
1, 1, 1, 1, 4, 24;
1, 1, 1, 1, 2, 7, 51;
1, 1, 1, 1, 1, 4, 12, 107;
1, 1, 1, 1, 1, 2, 6, 21, 222;
1, 1, 1, 1, 1, 1, 4, 9, 36, 457;
...
CROSSREFS
Cf. A027934.
Sequence in context: A127080 A216645 A216635 * A290771 A014651 A275422
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 25 2012
STATUS
approved