login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (1+x+x^2+2*x^5-2*x^10)/(1-3*x^3).
1

%I #67 Jan 17 2021 06:24:56

%S 1,1,1,3,3,5,9,9,15,27,25,45,81,75,135,243,225,405,729,675,1215,2187,

%T 2025,3645,6561,6075,10935,19683,18225,32805,59049,54675,98415,177147,

%U 164025,295245,531441,492075,885735,1594323,1476225,2657205,4782969,4428675,7971615

%N G.f.: (1+x+x^2+2*x^5-2*x^10)/(1-3*x^3).

%H Vincenzo Librandi, <a href="/A213933/b213933.txt">Table of n, a(n) for n = 0..1000</a> [a(0)=1 inserted by _Georg Fischer_, Jan 17 2021]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3).

%t lst = {}; Do[a = Ceiling[25*3^(n - 3)]; b = Floor[5*3^(n - 1)]; c = 3^(n + 1); AppendTo[lst, {a, b, c}], {n, 0, 14}]; Prepend[Flatten@lst, 1]

%t CoefficientList[Series[(1 + x + x^2 + 2*x^5 - 2*x^10)/(1 - 3*x^3), {x, 0, 44}], x] (* _Vincenzo Librandi_, Jul 12 2012 *)

%t LinearRecurrence[{0,0,3},{1,1,1,3,3,5,9,9,15,27,25},51] (* _Harvey P. Dale_, Jan 12 2020 *)

%o (PARI) my(x='x+O('x^50)); Vec((1+x+x^2+2*x^5-2*x^10)/(1-3*x^3)) \\ _Michel Marcus_, Jan 16 2021

%Y Cf. A000792, A091916.

%K nonn,easy

%O 0,4

%A _Arkadiusz Wesolowski_, Jun 25 2012

%E Replaced unclear definition with a precise generating function from _Bruno Berselli_, Jun 27 2012. - _N. J. A. Sloane_, Jan 11 2021

%E Name changed and initial term added by _Arkadiusz Wesolowski_, Dec 20 2020