login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n^2 is a sum of 11 consecutive primes.
0

%I #10 Sep 08 2022 08:46:02

%S 107,113,383,567,601,951,1005,1059,1169,1269,1313,1343,1415,1641,1719,

%T 1759,1823,2237,2315,2323,2505,2605,2737,2743,2801,2881,2913,3351,

%U 3355,3405,3583

%N n^2 is a sum of 11 consecutive primes.

%C Initial primes of the sets of 11 consecutive primes are

%C 1013, 1117, 13291, 29179, 32789, 82183, 91771, 101891, 124181, 146347, 156679, 163901, 181967, 244747, 268537, 281233, 301999, 454859, 487111, 490541, 570407, 616843, 680971, 683923, 713183, 754483, 771349, 1020779, 1023227, 1053959, 1166987

%C and their indices are

%C 170, 187, 1578, 3172, 3516, 8035, 8867, 9757, 11664, 13538, 14409, 15007, 16490, 21614, 23524, 24535, 26165, 38072, 40538, 40807, 46852, 50379, 55135, 55356, 57545, 60580, 61836, 80027, 80212, 82399, 90554

%e 107^2 = 11449 = prime(170) + ... + prime(180) = 1013 + ... + 1069.

%t Select[Sqrt[Total /@ Partition[Prime[Range[100000]], 11, 1]], IntegerQ]

%o (Magma) [Isqrt(m): n in [1..10^5] | IsSquare(m) where m is &+[NthPrime(n+i): i in [0..10]]]; // _Bruno Berselli_, Mar 05 2013

%K nonn

%O 1,1

%A _Zak Seidov_, Mar 05 2013