login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of the convolution array A213828.
3

%I #16 Jun 17 2017 03:06:27

%S 2,18,78,230,540,1092,1988,3348,5310,8030,11682,16458,22568,30240,

%T 39720,51272,65178,81738,101270,124110,150612,181148,216108,255900,

%U 300950,351702,408618,472178,542880,621240

%N Antidiagonal sums of the convolution array A213828.

%C Every term is even.

%H Clark Kimberling, <a href="/A213830/b213830.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = (2*n + n^2 + 2*n^3 + 3*n^4)/4.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

%F G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 4*x + 4*x^2) and g(x) = (1-x)^5.

%t (See A213828.)

%t LinearRecurrence[{5,-10,10,-5,1},{2,18,78,230,540},30] (* _Harvey P. Dale_, Jan 11 2015 *)

%Y Cf. A213828.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Jul 04 2012