Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Nov 05 2019 05:55:15
%S 14561,14083,13613,13151,12697,12251,11813,11383,10961,10547,10141,
%T 9743,9353,8971,8597,8231,7873,7523,7181,6847,6521,6203,5893,5591,
%U 5297,5011,4733,4463,4201,3947,3701,3463,3233,3011,2797,2591,2393,2203,2021,1847,1681,1523
%N a(n) = 4*n^2 - 482*n + 14561.
%C A "prime-generating" polynomial: This polynomial generates 88 distinct primes for n from 0 to 99, just two primes fewer than the record held by the polynomial discovered by N. Boston and M. L. Greenwood, that is 41*n^2 - 4641*n + 88007 (this polynomial is sometimes cited as 41*n^2 + 33*n - 43321, which is the same for the input values [-57, 42], see the references below).
%C The nonprime terms in the first 100 are: 10961 = 97*113; 10547 = 53*199; 9353 = 47*199; 7181 = 43*167; 6847 = 41*167; 5893 = 71*83; 3233 = 53*61; 2021 = 43*47; 1681 = 41^2; 1763 = 41*43; 2491 = 47*53; 4331 = 61*71.
%C For n = m + 41 we obtain the polynomial 4*m^2 - 154*m + 1523, which generates 40 primes in a row starting from m=0 (polynomial already reported, see the link below).
%D W. Narkiewicz, The Development of Prime Number Theory: from Euclid to Hardy and Littlewood, Springer Monographs in Mathematics, 2000, page 43.
%H G. C. Greubel, <a href="/A213810/b213810.txt">Table of n, a(n) for n = 0..1000</a>
%H R. A. Mollin, <a href="http://www.jstor.org/stable/2975080">Prime-Producing Quadratics</a>, The American Mathematical Monthly, Vol. 104, No. 6 (1997), pp. 529-544.
%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_232.htm">Puzzle 232: Primes and Cubic polynomials</a>, The Prime Puzzles & Problems Connection.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 4*n^2 - 482*n + 14561.
%F G.f.: (-15047*x^2+29600*x-14561)/(x-1)^3. - _Alexander R. Povolotsky_, Jun 21 2012
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _G. C. Greubel_, Feb 26 2017
%t Table[4n^2-482n+14561,{n,0,41}] (* _Harvey P. Dale_, Sep 09 2014 *)
%t LinearRecurrence[{3,-3,1},{14561, 14083, 13613}, 50] (* or *) CoefficientList[Series[ (-15047*x^2+29600*x-14561)/(x-1)^3, {x,0,50}], x] (* _G. C. Greubel_, Feb 26 2017 *)
%o (PARI) x='x+O('x^50); Vec((-15047*x^2+29600*x-14561)/(x-1)^3) \\ _G. C. Greubel_, Feb 26 2017
%Y Cf. A181973, A211773, A211775.
%K nonn,easy
%O 0,1
%A _Marius Coman_, Jun 20 2012
%E Edited by _N. J. A. Sloane_, Nov 12 2016