login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 X 3 0..n symmetric arrays with all rows summing to floor(n*3/2).
1

%I #40 Oct 27 2024 17:55:39

%S 4,13,29,57,96,153,226,323,440,587,759,967,1204,1483,1796,2157,2556,

%T 3009,3505,4061,4664,5333,6054,6847,7696,8623,9611,10683,11820,13047,

%U 14344,15737,17204,18773,20421,22177,24016,25969,28010,30171,32424,34803,37279

%N Number of 3 X 3 0..n symmetric arrays with all rows summing to floor(n*3/2).

%C Row 3 of A213800.

%C Sequence is difference between numbers of triangles, regardless of size, in A064412 (a family of ((3*n^2+3*n+2)/2)-iamonds, see also illustration of initial terms there) and a quantity A077043 of triangles of dimension 1. - _Luce ETIENNE_, Aug 23 2014

%H R. H. Hardin, <a href="/A213801/b213801.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -a(n-8).

%F Empirical: G.f. -x*(-4-5*x-3*x^2-7*x^3-x^5-2*x^6+x^7) / ( (x^2+1)*(1+x)^2*(x-1)^4 ). - _R. J. Mathar_, Jul 04 2012

%F a(n) = (14*n^3+42*n^2+53*n+25+3*(n+1)*(-1)^n+2*((-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+5-(-1)^n)/4)))/32. - _Luce ETIENNE_, Aug 23 2014

%F a(n) = A064412(n+1) - A077043((2*n+1-(-1)^n)/4). - _Luce ETIENNE_, Aug 23 2014

%e Some solutions for n=4:

%e ..1..3..2....2..4..0....0..4..2....1..2..3....1..1..4....4..0..2....2..2..2

%e ..3..1..2....4..0..2....4..0..2....2..2..2....1..3..2....0..2..4....2..2..2

%e ..2..2..2....0..2..4....2..2..2....3..2..1....4..2..0....2..4..0....2..2..2

%e a(2)=5-1=4, a(3)=14-1=13, a(210)=4118206-8269=4109937. - _Luce ETIENNE_, Aug 23 2014

%Y Cf. A064412, A077403.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 20 2012