login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of the convolution array A213753.
3

%I #18 Feb 19 2024 03:11:02

%S 1,9,44,160,491,1355,3486,8546,20245,46773,106048,236980,523535,

%T 1145935,2489202,5372534,11532633,24639513,52426420,111146280,

%U 234877811,494924179,1040183174,2181033290,4563397341,9529452605

%N Antidiagonal sums of the convolution array A213753.

%H Clark Kimberling, <a href="/A213755/b213755.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (8,-26,44,-41,20,-4).

%F a(n) = (1/6)*(84 - 21*2^(n+2) + 23*n + 9*n*2^(n+2) - 3*n^2 - 2*n^3).

%F a(n) = 8*a(n-1) - 26*a(n-2) + 44*a(n-3) - 41*a(n-4) + 20*a(n-5) - 4*a(n-6).

%F G.f.: f(x)/g(x), where f(x) = x*(1 + x - 2*x^2 - 2*x^3) and g(x) = (1 - x)^4 * (1 - 2*x)^2.

%t (See A213753.)

%Y Cf. A213753, A213500.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jun 20 2012