%I #42 Oct 24 2021 09:01:53
%S 11,380284918609481,437163765888581,701889794782061,980125031081081,
%T 1277156391416021,1487854607298791,1833994713165731,2115067287743141,
%U 2325810733931801,3056805353932061,3252606350489381,3360877662097841,3501482688249431,3595802556731501
%N Initial members of prime 12-tuplets. Primes p such that p + (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42) are all prime.
%C All terms, except the first one, are congruent to 1271 (modulo 2310). - _Matt C. Anderson_, May 29 2015
%H Matt C. Anderson and Dana Jacobsen, <a href="/A213645/b213645.txt">Table of n, a(n) for n = 1..2807</a> [first 83 entries by Matt C. Anderson]
%H Tony Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets">prime k-tuplets</a>
%H Norman Luhn, <a href="http://www.pzktupel.de/smarchive.html">Table of n, a(n) for n = 1..20000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_k-tuple">Prime k-tuple</a>
%o (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 10**15, 2,6,8,12,18,20,26,30,32,36,42); # _Dana Jacobsen_, Oct 04 2015
%Y Cf. A022545, A022546, A022547, and A022548 (prime 9-tuplets).
%Y Cf. A135311, 2*A101448 (both begin with 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42).
%K nonn
%O 1,1
%A _Matt C. Anderson_, Jun 17 2012
%E Corrected and extended by _Dana Jacobsen_, Oct 04 2015