Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Oct 24 2021 09:01:53
%S 11,380284918609481,437163765888581,701889794782061,980125031081081,
%T 1277156391416021,1487854607298791,1833994713165731,2115067287743141,
%U 2325810733931801,3056805353932061,3252606350489381,3360877662097841,3501482688249431,3595802556731501
%N Initial members of prime 12-tuplets. Primes p such that p + (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42) are all prime.
%C All terms, except the first one, are congruent to 1271 (modulo 2310). - _Matt C. Anderson_, May 29 2015
%H Matt C. Anderson and Dana Jacobsen, <a href="/A213645/b213645.txt">Table of n, a(n) for n = 1..2807</a> [first 83 entries by Matt C. Anderson]
%H Tony Forbes and Norman Luhn, <a href="http://www.pzktupel.de/ktuplets">prime k-tuplets</a>
%H Norman Luhn, <a href="http://www.pzktupel.de/smarchive.html">Table of n, a(n) for n = 1..20000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_k-tuple">Prime k-tuple</a>
%o (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 10**15, 2,6,8,12,18,20,26,30,32,36,42); # _Dana Jacobsen_, Oct 04 2015
%Y Cf. A022545, A022546, A022547, and A022548 (prime 9-tuplets).
%Y Cf. A135311, 2*A101448 (both begin with 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42).
%K nonn
%O 1,1
%A _Matt C. Anderson_, Jun 17 2012
%E Corrected and extended by _Dana Jacobsen_, Oct 04 2015