login
The sequence Z(n) arising in the enumeration of balanced binary trees.
0

%I #12 Nov 26 2017 21:49:57

%S 1,3,4,7,9,10,11,15,18,20,22,23,24,25,26,31,35,38,41,43,45,47,49,50,

%T 51,52,53,54,55,56,57,63,68,72,76,79,82,85,88,90,92,94,96,98,100,102,

%U 104,105,106,107

%N The sequence Z(n) arising in the enumeration of balanced binary trees.

%C See Cha (2012) for the precise definition.

%D Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585

%H Sung-Hyuk Cha, <a href="http://www.wseas.us/e-library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-60.pdf">On Integer Sequences Derived from Balanced k-ary Trees</a>, Applied Mathematics in Electrical and Computer Engineering, 2012.

%H Sung-Hyuk Cha, <a href="http://naun.org/multimedia/UPress/ami/16-125.pdf">On Complete and Size Balanced k-ary Tree Integer Sequences</a>, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From _N. J. A. Sloane_, Dec 24 2012

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jun 12 2012