The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213477 Main diagonal starting k=2 of array A(k,n) = numbers n such that n^k - prime(n) is a prime. 0
 6, 10, 40, 14, 62, 76, 174, 278, 218, 702, 762, 758, 950, 858, 1782, 2290, 1596, 1462, 1848, 2964, 2262, 4278, 3750, 4320, 5076, 4010, 4890, 8040, 7494, 5962, 7996, 10318, 9424, 5770, 10080, 11088, 12222, 13806, 14712, 16904, 15222, 15620, 18258, 16092 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES The k=2 row is A064712 Numbers n such that n^2 - prime(n) is prime. The k=3 row is A212881 Numbers n such that n^3 - prime(n) is prime. The k=4 row is A212883 Numbers n such that n^4 - prime(n) is prime. The k=8 row is A213428 Numbers n such that n^8 - prime(n) is prime. LINKS EXAMPLE The array A{k,n] = Numbers n such that n^k - prime(n) is a prime begins: ===================================================== ....|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.| ===================================================== k=2.|.. 6.|..10.|..12.|..18.|..24.|..28.|..30.|..40.|A064712 k=3.|...2.|..10.|..38.|.42..|..44.|..50.|..66.|..74.|A212881 k=4.|...2.|...6.|..40.|.76..|.144.|.146.|.148.|.166.|A212883 ===================================================== MATHEMATICA Table[Select[Range[100000], PrimeQ[#^n - Prime[#]] &, n-1][[n-1]], {n, 2, 50}] (* T. D. Noe, Jun 13 2012 *) CROSSREFS Cf. A064712, A212881, A212883. Sequence in context: A332984 A038264 A094890 * A047178 A132095 A332441 Adjacent sequences:  A213474 A213475 A213476 * A213478 A213479 A213480 KEYWORD nonn AUTHOR Jonathan Vos Post, Jun 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 19:29 EDT 2020. Contains 336298 sequences. (Running on oeis4.)