login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

9-quantum transitions in systems of N >= 9 spin 1/2 particles, in columns by combination indices.
3

%I #19 Nov 21 2019 00:09:52

%S 1,20,220,11,1760,264,11440,3432,78,64064,32032,2184,320320,240240,

%T 32760,455,1464320,1537536,349440,14560,6223360,8712704,2970240,

%U 247520,2380,24893440,44808192,21385728,2970240,85680,94595072,212838912,135442944,28217280

%N 9-quantum transitions in systems of N >= 9 spin 1/2 particles, in columns by combination indices.

%C For a general discussion, please see A213343.

%C This a(n) is for nonuple-quantum transitions (q = 9).

%C It lists the flattened triangle T(9;N,k) with rows N = 9,10,... and columns k = floor((N-9)/2).

%D See A213343

%H Stanislav Sykora, <a href="/A213351/b213351.txt">Table of n, a(n) for n = 9..2170</a>

%H Stanislav Sykora, <a href="/A213351/a213351.txt">T(9;N,k) with rows N = 9..100 and columns k = 0..floor((N-9)/2)</a>

%H Stanislav Sýkora, <a href="http://www.ebyte.it/stan/blog12to14.html#14Dec31">Magnetic Resonance on OEIS</a>, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.

%F Set q = 9 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).

%e Starting rows of the triangle:

%e N | k = 0, 1, ..., floor((N-9)/2)

%e ---+------------------------------

%e 9 | 1

%e 10 | 20

%e 11 | 220 11

%e 12 | 1760 264

%e 13 | 11440 3432 78

%t With[{q = 9}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* _Michael De Vlieger_, Nov 20 2019 *)

%o (PARI) See A213343; set thisq = 9

%Y Cf. A051288 (q=0), A213343 to A213350 (q=1 to 8), A213352 (q= 10).

%Y Cf. A140354 (first column,with offset 9), A004315 (row sums).

%K nonn,tabl

%O 9,2

%A _Stanislav Sykora_, Jun 13 2012