Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 09 2012 15:00:34
%S 1,1,2,-1,-10,7,88,-68,-946,767,11298,-9425,-144024,122436,1919440,
%T -1653776,-26419778,22992655,372670246,-326863667,-5358911450,
%U 4729547023,78264621664,-69424933968,-1157715304760,1031309398852,17309542787288,-15474833826028
%N G.f. satisfies: A(x) = 1 + x/A(-x)^2.
%H Paul D. Hanna, <a href="/A213252/b213252.txt">Table of n, a(n) for n = 0..200</a>
%F G.f. satisfies: A(x) = G(x/A(x)^2) where G(x) = A(x*G(x)^2) is the g.f. of A006319 (royal paths in a lattice).
%F G.f. satisfies: A(x) = sqrt( x/Series_Reversion( x*C(x/(1-x)^2)^2 ) ) where C(x) = 1 + x*C(x)^2 = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
%F G.f. satisfies: A(x) = A(x)*A(-x) + x/A(x).
%e G.f.: A(x) = 1 + x + 2*x^2 - x^3 - 10*x^4 + 7*x^5 + 88*x^6 - 68*x^7 +...
%e where
%e x/A(-x)^2 = x + 2*x^2 - x^3 - 10*x^4 + 7*x^5 + 88*x^6 - 68*x^7 +...
%e A(x)^2 = 1 + 2*x + 5*x^2 + 2*x^3 - 18*x^4 - 10*x^5 + 151*x^6 + 88*x^7 +...
%e The g.f. G(x) of A006319 begins:
%e G(x) = 1 + x + 4*x^2 + 16*x^3 + 68*x^4 + 304*x^5 + 1412*x^6 + 6752*x^7 +...
%e where G(x) = A(x*G(x)^2) and G(x/A(x)^2) = A(x);
%e also, G(x) = F(x/(1-x)^2) where F(x) = 1 + x*F(x)^2 is g.f. of A000108:
%e F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x/subst(A^2,x,-x+x*O(x^n)));polcoeff(A,n)}
%o for(n=0,40,print1(a(n),", "))
%Y Cf. A006319, A213281, A213335, A143045; A000108.
%K sign
%O 0,3
%A _Paul D. Hanna_, Jun 07 2012