login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) in which n-th row lists in increasing order the distinct values v satisfying v = sum of elements in S = product of elements in P for a partition of {1,...,n} into two sets S and P.
2

%I #15 Feb 19 2021 11:17:06

%S 1,3,8,12,18,24,32,40,42,50,60,64,72,84,88,90,98,99,105,112,120,128,

%T 130,135,144,162,168,180,182,192,200,208,210,220,231,242,252,264,266,

%U 272,280,288,294,300,312,315,320,324,330,338,340,360,364,378,392,400

%N Triangle T(n,k) in which n-th row lists in increasing order the distinct values v satisfying v = sum of elements in S = product of elements in P for a partition of {1,...,n} into two sets S and P.

%H Alois P. Heinz, <a href="/A213238/b213238.txt">Rows n = 1..798, flattened</a>

%F T(n,1) = floor((n-1)^2/2) = A007590(n-1) for n>=5.

%e For n=1 v=1 satisfies the condition with S={1}, P={} => row 1 = [1].

%e For n=2 no v can be found => row 2 is empty: [].

%e For n=3 there is one solution: S={1,2}, P={3}, v=3 => row 3 = [3].

%e For n=10 we have three partitions of {1,2,...,10} into S and P satisfying v = Sum_{i:S} i = Product_{k:P} k but there are only two distinct values v: S={2,3,5,6,7,8,9}, P={1,4,10}, v=40; S={4,5,6,8,9,10}, P={1,2,3,7}, v=42; S={1,2,3,4,5,8,9,10}, P={6,7}, v=42 => row 10 = [40, 42].

%e Triangle T begins:

%e 1;

%e ;

%e 3;

%e ;

%e 8;

%e 12;

%e 18;

%e 24;

%e 32;

%e 40, 42;

%e 50;

%e 60, 64;

%e 72;

%e 84, 88, 90;

%e ...

%p b:= proc(n, s, p)

%p `if`(s=p, {s}, `if`(n<1, {}, {b(n-1, s, p)[],

%p `if`(s-n<p*n, {}, b(n-1, s-n, p*n))[]}))

%p end:

%p T:= n-> sort([b(n, n*(n+1)/2, 1)[]])[]:

%p seq(T(n), n=1..30);

%t b[n_, s_, p_] :=

%t If[s == p, {s}, If[n < 1, {}, {b[n-1, s, p],

%t If[s-n < p*n, {}, b[n-1, s-n, p*n]]} // Union]];

%t T[n_] := Sort[b[n, n(n+1)/2, 1] // Flatten] // Union;

%t Array[T, 30] // Flatten (* _Jean-François Alcover_, Feb 19 2021, after _Alois P. Heinz_ *)

%Y Row lengths (or number of solutions) are in A213237.

%Y T(n,1) = A007590(n-1) for n>=5.

%K nonn,tabf

%O 1,2

%A _Alois P. Heinz_, Jun 07 2012