login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct products i*j*k over all triples (i,j,k) with i,j,k >= 0 and i+j+k <= n and gcd(i,j,k) <= 1.
7

%I #22 Oct 27 2023 21:14:20

%S 1,1,1,2,3,5,6,10,12,17,20,26,29,38,44,52,59,72,78,94,104,118,130,149,

%T 160,182,198,221,237,263,278,308,330,361,383,416,438,480,509,546,574,

%U 620,646,699,734,777,816,872,907,969,1012,1071,1117,1190,1233,1307,1361

%N Number of distinct products i*j*k over all triples (i,j,k) with i,j,k >= 0 and i+j+k <= n and gcd(i,j,k) <= 1.

%C This sequence is in reply to an extension request made in A100450.

%C Note that gcd(0,m) = m for any m.

%H Alois P. Heinz, <a href="/A213212/b213212.txt">Table of n, a(n) for n = 0..1000</a> (terms n = 0..200 from Robert Price)

%F a(n) = (A213208(n) + 1)/2.

%p h:= proc() true end:

%p b:= proc(n) local c, i, j, p;

%p c:=0;

%p for i to iquo(n, 3) do

%p for j from i to iquo(n-i, 2) do

%p if igcd(i, j, n-i-j)=1 then p:= i*j*(n-i-j);

%p if h(p) then h(p):= false; c:=c+1 fi

%p fi

%p od

%p od; c

%p end:

%p a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +b(n)) end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 02 2013

%t f[n_] := Length[ Union[ Flatten[ Table[ If[ i+j+k <= n&& GCD[i, j, k] <= 1, i*j*k, 0], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]]]; Table[ f[n], {n, 0, 200}]

%Y Cf. A018805, A027430, A100448, A100449, A100450, A213207, A213208, A213213.

%K nonn,easy

%O 0,4

%A _Robert Price_, Mar 02 2013