login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum over all partitions lambda of n of Sum_{p:lambda} p^m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.
3

%I #32 May 24 2018 03:44:00

%S 0,1,3,7,16,28,59,91,170,269,450,655,1162,1602,2527,3793,5805,8034,

%T 12660,17131,26484,37384,53738,73504,114683,153613,221225,313339,

%U 453769,609179,927968,1223909,1804710,2522264,3539835,4855420,7439870,9765555,14009545

%N Sum over all partitions lambda of n of Sum_{p:lambda} p^m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.

%H Alois P. Heinz, <a href="/A213180/b213180.txt">Table of n, a(n) for n = 0..5000</a>

%F From _Vaclav Kotesovec_, May 24 2018: (Start)

%F a(n) ~ c * 3^(n/3), where

%F c = 5.0144820680945600131204662934686439430547... if mod(n,3)=0

%F c = 4.6144523178014379613985400559486878971522... if mod(n,3)=1

%F c = 4.5237761454818383598444208605033385016299... if mod(n,3)=2

%F (End)

%e a(6) = 59: (1^6) + (2+1^4) + (2^2+1^2) + (2^3) + (3+1^3) + (3+2+1) + (3^2) + (4+1^2) + (4+2) + (5+1) + (6) = 1+3+5+8+4+6+9+5+6+6+6 = 59.

%p b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],

%p add((l->`if`(m=0, l, l+[0, l[1]*p^m]))(b(n-p*m, p-1)), m=0..n/p)))

%p end:

%p a:= n-> b(n, n)[2]:

%p seq(a(n), n=0..40);

%t b[n_, p_] := b[n, p] = If[n==0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m==0, l, l+{0, l[[1]]*p^m}]][b[n-p*m, p-1]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 15 2017, translated from Maple *)

%Y Cf. A000070 (Sum 1), A006128 (Sum m), A014153 (Sum p), A024786 (Sum floor(1/m)), A066183 (Sum p^2*m), A066186 (Sum p*m), A073336 (Sum floor(m/p)), A116646 (Sum delta(m,2)), A117524 (Sum delta(m,3)), A103628 (Sum delta(m,1)*p), A117525 (Sum delta(m,2)*p), A197126, A213191.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Feb 27 2013